5. 数据结构¶
本章深入讲解之前学过的一些内容,同时,还增加了新的知识点。
5.1. 列表详解¶
列表数据类型支持很多方法,列表对象的所有方法所示如下:
-
list.
append
(x) 在列表末尾添加一个元素,相当于
a[len(a):] = [x]
。
-
list.
extend
(iterable) 用可迭代对象的元素扩展列表。相当于
a[len(a):] = iterable
。
-
list.
insert
(i, x) 在指定位置插入元素。第一个参数是插入元素的索引,因此,
a.insert(0, x)
在列表开头插入元素,a.insert(len(a), x)
等同于a.append(x)
。
-
list.
remove
(x) 从列表中删除第一个值为 x 的元素。未找到指定元素时,触发
ValueError
异常。
-
list.
pop
([i]) 删除列表中指定位置的元素,并返回被删除的元素。未指定位置时,
a.pop()
删除并返回列表的最后一个元素。(方法签名中 i 两边的方括号表示该参数是可选的,不是要求输入方括号。这种表示法常见于 Python 参考库)。
-
list.
clear
() 删除列表里的所有元素,相当于
del a[:]
。
-
list.
index
(x[, start[, end]]) 返回列表中第一个值为 x 的元素的零基索引。未找到指定元素时,触发
ValueError
异常。可选参数 start 和 end 是切片符号,用于将搜索限制为列表的特定子序列。返回的索引是相对于整个序列的开始计算的,而不是 start 参数。
-
list.
count
(x) 返回列表中元素 x 出现的次数。
-
list.
sort
(*, key=None, reverse=False) 就地排序列表中的元素(要了解自定义排序参数,详见
sorted()
)。
-
list.
reverse
() 翻转列表中的元素。
-
list.
copy
() 返回列表的浅拷贝。相当于
a[:]
。
多数列表方法示例:
>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count('apple')
2
>>> fruits.count('tangerine')
0
>>> fruits.index('banana')
3
>>> fruits.index('banana', 4) # Find next banana starting a position 4
6
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()
'pear'
insert
、remove
、sort
等方法只修改列表,不输出返回值——返回的默认值为 None
。1 这是所有 Python 可变数据结构的设计原则。
还有,不是所有数据都可以排序或比较。例如,[None, 'hello', 10]
就不可排序,因为整数不能与字符串对比,而 None 不能与其他类型对比。有些类型根本就没有定义顺序关系,例如,3+4j < 5+7j
这种对比操作就是无效的。
5.1.1. 用列表实现堆栈¶
使用列表方法实现堆栈非常容易,最后插入的最先取出(“后进先出”)。把元素添加到堆栈的顶端,使用 append()
。从堆栈顶部取出元素,使用 pop()
,不用指定索引。例如:
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
5.1.2. 用列表实现队列¶
列表也可以用作队列,最先加入的元素,最先取出(“先进先出”);然而,列表作为队列的效率很低。因为,在列表末尾添加和删除元素非常快,但在列表开头插入或移除元素却很慢(因为所有其他元素都必须移动一位)。
实现队列最好用 collections.deque
,可以快速从两端添加或删除元素。例如:
>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])
5.1.3. 列表推导式¶
列表推导式创建列表的方式更简洁。常见的用法为,对序列或可迭代对象中的每个元素应用某种操作,用生成的结果创建新的列表;或用满足特定条件的元素创建子序列。
例如,创建平方值的列表:
>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
注意,这段代码创建(或覆盖)变量 x
,该变量在循环结束后仍然存在。下述方法可以无副作用地计算平方列表:
squares = list(map(lambda x: x**2, range(10)))
或等价于:
squares = [x**2 for x in range(10)]
上面这种写法更简洁、易读。
列表推导式的方括号内包含以下内容:一个表达式,后面为一个 for
子句,然后,是零个或多个 for
或 if
子句。结果是由表达式依据 for
和 if
子句求值计算而得出一个新列表。 举例来说,以下列表推导式将两个列表中不相等的元素组合起来:
>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
等价于:
>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
表达式是元组(例如上例的 (x, y)
)时,必须加上括号:
>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
File "<stdin>", line 1, in <module>
[x, x**2 for x in range(6)]
^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
列表推导式可以使用复杂的表达式和嵌套函数:
>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
5.1.4. 嵌套的列表推导式¶
列表推导式中的初始表达式可以是任何表达式,甚至可以是另一个列表推导式。
下面这个 3x4 矩阵,由 3 个长度为 4 的列表组成:
>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
下面的列表推导式可以转置行列:
>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
如上节所示,嵌套的列表推导式基于其后的 for
求值,所以这个例子等价于:
>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
反过来说,也等价于:
>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
实际应用中,最好用内置函数替代复杂的流程语句。此时,zip()
函数更好用:
>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]
关于本行中星号的详细说明,参见 解包实参列表。
5.2. del
语句¶
del
语句按索引,而不是值从列表中移除元素。与返回值的 pop()
方法不同, del
语句也可以从列表中移除切片,或清空整个列表(之前是将空列表赋值给切片)。 例如:
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]
del
也可以用来删除整个变量:
>>> del a
此后,再引用 a
就会报错(直到为它赋与另一个值)。后文会介绍 del
的其他用法。
5.3. 元组和序列¶
列表和字符串有很多共性,例如,索引和切片操作。这两种数据类型是 序列 (参见 序列类型 --- list, tuple, range)。随着 Python 语言的发展,其他的序列类型也被加入其中。本节介绍另一种标准序列类型:元组。
元组由多个用逗号隔开的值组成,例如:
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])
输出时,元组都要由圆括号标注,这样才能正确地解释嵌套元组。输入时,圆括号可有可无,不过经常是必须的(如果元组是更大的表达式的一部分)。不允许为元组中的单个元素赋值,当然,可以创建含列表等可变对象的元组。
虽然,元组与列表很像,但使用场景不同,用途也不同。元组是 immutable (不可变的),一般可包含异质元素序列,通过解包(见本节下文)或索引访问(如果是 namedtuples
,可以属性访问)。列表是 mutable (可变的),列表元素一般为同质类型,可迭代访问。
构造 0 个或 1 个元素的元组比较特殊:为了适应这种情况,对句法有一些额外的改变。用一对空圆括号就可以创建空元组;只有一个元素的元组可以通过在这个元素后添加逗号来构建(圆括号里只有一个值的话不够明确)。丑陋,但是有效。例如:
>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)
语句 t = 12345, 54321, 'hello!'
是 元组打包 的例子:值 12345
, 54321
和 'hello!'
一起被打包进元组。逆操作也可以:
>>> x, y, z = t
称之为 序列解包 也是妥妥的,适用于右侧的任何序列。序列解包时,左侧变量与右侧序列元素的数量应相等。注意,多重赋值其实只是元组打包和序列解包的组合。
5.4. 集合¶
Python 还支持 集合 这种数据类型。集合是由不重复元素组成的无序容器。基本用法包括成员检测、消除重复元素。集合对象支持合集、交集、差集、对称差分等数学运算。
创建集合用花括号或 set()
函数。注意,创建空集合只能用 set()
,不能用 {}
,{}
创建的是空字典,下一小节介绍数据结构:字典。
以下是一些简单的示例
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}
与 列表推导式 类似,集合也支持推导式:
>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}
5.5. 字典¶
字典 (参见 映射类型 --- dict) 也是一种常用的 Python 內置数据类型。其他语言可能把字典称为 联合内存 或 联合数组。与以连续整数为索引的序列不同,字典以 关键字 为索引,关键字通常是字符串或数字,也可以是其他任意不可变类型。只包含字符串、数字、元组的元组,也可以用作关键字。但如果元组直接或间接地包含了可变对象,就不能用作关键字。列表不能当关键字,因为列表可以用索引、切片、append()
、extend()
等方法修改。
可以把字典理解为 键值对 的集合,但字典的键必须是唯一的。花括号 {}
用于创建空字典。另一种初始化字典的方式是,在花括号里输入逗号分隔的键值对,这也是字典的输出方式。
字典的主要用途是通过关键字存储、提取值。用 del
可以删除键值对。用已存在的关键字存储值,与该关键字关联的旧值会被取代。通过不存在的键提取值,则会报错。
对字典执行 list(d)
操作,返回该字典中所有键的列表,按插入次序排列(如需排序,请使用 sorted(d)
)。检查字典里是否存在某个键,使用关键字 in
。
以下是一些字典的简单示例:
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False
dict()
构造函数可以直接用键值对序列创建字典:
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}
字典推导式可以用任意键值表达式创建字典:
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
关键字是比较简单的字符串时,直接用关键字参数指定键值对更便捷:
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}
5.6. 循环的技巧¶
在字典中循环时,用 items()
方法可同时取出键和对应的值:
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave
在序列中循环时,用 enumerate()
函数可以同时取出位置索引和对应的值:
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe
同时循环两个或多个序列时,用 zip()
函数可以将其内的元素一一匹配:
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
逆向循环序列时,先正向定位序列,然后调用 reversed()
函数:
>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1
按指定顺序循环序列,可以用 sorted()
函数,在不改动原序列的基础上,返回一个重新的序列:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for i in sorted(basket):
... print(i)
...
apple
apple
banana
orange
orange
pear
使用 set()
去除序列中的重复元素。使用 sorted()
加 set()
则按排序后的顺序,循环遍历序列中的唯一元素:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear
一般来说,在循环中修改列表的内容时,创建新列表比较简单,且安全:
>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]
5.7. 深入条件控制¶
while
和 if
条件句不只可以进行比较,还可以使用任意运算符。
The comparison operators in
and not in
are membership tests that
determine whether a value is in (or not in) a container. The operators is
and is not
compare whether two objects are really the same object. All
comparison operators have the same priority, which is lower than that of all
numerical operators.
比较操作支持链式操作。例如,a < b == c
校验 a
是否小于 b
,且 b
是否等于 c
。
比较操作可以用布尔运算符 and
和 or
组合,并且,比较操作(或其他布尔运算)的结果都可以用 not
取反。这些操作符的优先级低于比较操作符;not
的优先级最高, or
的优先级最低,因此,A and not B or C
等价于 (A and (not B)) or C
。与其他运算符操作一样,此处也可以用圆括号表示想要的组合。
布尔运算符 and
和 or
也称为 短路 运算符:其参数从左至右解析,一旦可以确定结果,解析就会停止。例如,如果 A
和 C
为真,B
为假,那么 A and B and C
不会解析 C
。用作普通值而不是布尔值时,短路操作符返回的值通常是最后一个变量。
还可以把比较操作或逻辑表达式的结果赋值给变量,例如:
>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'
注意,Python 与 C 不同,在表达式内部赋值必须显式使用 海象运算符 :=
。 这避免了 C 程序中常见的问题:要在表达式中写 ==
时,却写成了 =
。
5.8. 序列和其他类型的比较¶
序列对象可以与相同序列类型的其他对象比较。这种比较使用 字典式 顺序:首先,比较前两个对应元素,如果不相等,则可确定比较结果;如果相等,则比较之后的两个元素,以此类推,直到其中一个序列结束。如果要比较的两个元素本身是相同类型的序列,则递归地执行字典式顺序比较。如果两个序列中所有的对应元素都相等,则两个序列相等。如果一个序列是另一个的初始子序列,则较短的序列可被视为较小(较少)的序列。 对于字符串来说,字典式顺序使用 Unicode 码位序号排序单个字符。下面列出了一些比较相同类型序列的例子:
(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
注意,对不同类型的对象来说,只要待比较的对象提供了合适的比较方法,就可以使用 <
和 >
进行比较。例如,混合数值类型通过数值进行比较,所以,0 等于 0.0,等等。否则,解释器不会随便给出一个对比结果,而是触发 TypeError
异常。
备注
- 1
别的语言可能会返回可变对象,允许方法连续执行,例如,
d->insert("a")->remove("b")->sort();
。